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FOREWORD

This report was prepared in the Applied Mathematics Research
Branch of the Aeronautical Research Laboratory, Air Force Research
Division, Air Research and Development Command, Wright-Patterson
Air Force Base, Ohio., The problem stems from a proposed electronic
method for extracting information from very low-contrast photographs,
through grain counts of the enlargements, and originated in the Solid
State Physics Research Branch of the Aeronautical Research Labora-
tory. The authors gratefully acknowledge numerous discussions with
Dr. Lee Devol and Mr. Radames Gebel on the basic physical question
which has been presented in WADC TN 58-110, " Electronic Contrast
Selector and Grain Spacing to Light Intensity Translator for Photo-
_graphic Enlargements', by R. Gebel. The work presented herein is an

attempt at a suitable mathematical formulation as a basis for proper

analysis of such grain counts. The authors also acknowledge the assist-

ance of Mrs, Martha Elmore and Mr, James Caslin in the preparation

of some of the tables and graphs. Appendix III on computational procedures

developed for formulas given in Section 7 (to be used with the Burroughs

E-101 Electrodata Electronic Computer) was written by Mr. Caslin. The

work was carried out under Project 7071, Task 70437, " Methods of

Mathematiical Physics'.
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ABSTRACT

The accuracy of the evaluation of a photographic plate is limited
by its grain structure. One approximates the value for the light density
at a given point by the average light density in a small area (the "test
are') surrounding the point. This paper establishes confidence limits
for evaluation procedures of this kind. It is assumed that the grains on
the photographic plate arise in independent random processes controlled
by the local density of the light flux. In the evaluation procedure one
counts the number of grains in the test area. Generalizing the method
one attaches a weight factor to each grain depending upon the grain
position within the test area and then determines the sum of the weight
factors for the grains found in the test area. By such a procedure one

can determine quantities related to the light density, e.g. the density

gradient; one can also scan for patterns of a special kind, e.g. a sudden
jump of the light density, For measurements of this kind probability
theory predicts the expected value and the variance in terms of the light
density and the chosen weight function. There are two kinds of errors
in the measurement process: errors due to the non-vanishing size of
the test area, and errors due to the randomness inherent in the process
of grain generation. The variance due to errors of both kinds must be
minimized. The treatment of these questions is shown in a number of

examples of increasing complexity. Moreover, this report investigates

et stet
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the probability of making an error if one tries to discriminate between '
; two known light densities on the basis of grain counts, and it also examines

a step-wise method for carrying out such counts.
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INTRODUCTION

& mw%

In order to gain maximum information from a photograph one may

e

enlarge it to the extent that the individual grains show up. The density
of the grains is proportional to the flux of light hitting a particular area.
The grains of the photographic plate arise by a random process; there-
fore, the statistical variations in the density of them set a limit to the
evaluation. The interpretation of the photograph will then amount to
somehow forming average densities; also one may try to recognize
patterns or some main features of the picture. This process is usally
done by inspection, perhaps with some additional photographic techn:ques,
such as high contrast prints. The question can be asked whether this
process can be done by a photoelectric scanning process. This may be
desirable for several reasons. The photoelectric processes might reveal
information which is hard to recognize with the eye. Whether this is
true dep. nds upon the performance of the eye, and this question does not
concern us in this report. The photoelectric evaluation would not require
human judgment, and thus it is not subject to fatigue and also it can be
done more quickly. It is felt that the second point is sufficiently important
to justify a closer study of this possibility.

We ask in this report which conclusion about the energy density of the
electromagnetic waves can be drawn from the distribution of grains on
given photographic plates. Local measurements are impossible because

of the grain structure of the plate, therefore one will try to characterize
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the desired light density at a given point by an average - possibly a
weighted average - of the grain density over an area surrounding this
point. This paper treats this process from a probabilistic point of

view. Confidence limits are established for different measuring pro-
cedures and it is shown how to choose a weight factor characterizing

the measurements in such a manner that the error limits are minimized.

By a suitable choice of the weight factor it is possible to determine,
beside the light density,other quantities related to it, e. g. its gradient.
Furthermore,it is possible to search for special patterns, e.g. for a
jump of the light density, or for narrow lines of a higher density.

From a technical point of view the question of discriminating between
two fixed light densities may be of interest. Here one will define a certain
cut-off count for the number of grains, and ascribe to all areas with a
count below the cut-off the lower light density, to all others the higher
one, For this procedure, formulae for the probability of error are giver.

From a practical point of view, one might be inclined to determine
first for subareas of the test area, whether they belong to the higher or
to the lower light density. The majority of assignment of one kind or the
other in the test area will then determine, whether the test area belongs
to the higher or to the lower count. The probability of error for this
procedure and for a direct count for the entire test area is also investi-

gated.
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1. Model Connecting the Grains of the Photographic Plate With the

Light Flux

For our theoretical analysis we need a model for the interaction
of light with the photographic plate. The light manifests itself in
photons, i.e. at discrete points of the photographic plate. Not every
photon gives a chemical reaction on the plate; a major portion of the
light passes through without indication. But some photons modify
certain molecules. The grains which we see are clusters of changed
molecules which grow because of the development process around the
molecules of the photographic emulsion that have been changed by
the photons. The subsequent computations are based on the follow-
ing model for the creation of grains: For a first example assume
the energy density of the light waves to be constant. Let us assume
that we can stretch the time scale in such a manner that one grain
arises after the other. Then the grain arising first will be found at
some spot of the plate and all locations are equally probable. The
probability of finding a grain in a given area is equal to this area
divided by the area of the whole plate. The second grain arises in
exactly the same manner and its location is not influenced by the
location of the first grain. The sa'ne holds for all grains that arise
subsequently. One says that the arising of grains represent inde-
pendent events.

If the light density varies across the plate, then the probability

of finding the first grain in a given area is equal to the integral of

3
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the light flux for the area considered, divided by the integral for
the light flux over the whole plate. Again the production of any
one grain is assumed to be independent of the production of all
other grains. Furthermore it is assumed that all grains have the
same darkness and can be considered as points, i.e. if one counts
grains in a given area, a grain is either inside or outside of that
area.

2. Some Results of Probability Theory

For our future discussion some results of probability theory
will be needed. They are derived in Appendix I. Here they will
be quoted and described in a self-contained manner.

The number of photons that act on the photographic plate and the
number of grains produced are considered as very large. For the
measurement, a small area called " test area" of the photographic
plate is considered and from the number and the arrangement of
the grains certain conclusions on the density of the incoming light
are drawn.

Let us introduce on the phographic plate a Cartesian system of
coordinates. The probability that a grain is produced in a certain
area is considered to be proportional to the light flux across the
area multiplied by the exposure time. Let the density of the light
flux (the energy of the electromagnetic waves per unit area) be
given by p(x,y). If one makes a great number of photographs of

the same object and counts in all photographs the number of grains

4
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in the same test area A, then the counts will in general not be the
same. Let N be the conceptual average formed from an infinitely great
number of such counts. (The number N is also denoted 2s ' expected
value''). A factor of proportionality which contains the exposure time
and the sensitivity of the plate may be denoted by k such that

N=k [[p(x,y)dxdy (1)
A

is the average number of grains to be expected in A.

Let 6(x,y) be a weighting function. The choice of this weight-
ing function determines the measurement that is carried out. The
individual grains found in the test area in a specific experiment may
be numberedas 1,2, ... i ... n (n will be close to N but need not be
equal to N); the coordinates of the individual grains are (xl, yl) o
(xi, yi) ... The function 0(x,y) then yields the weight 6 (xi, yi) for
grain i in the position (xi, yi) . A measurement then determines the

expression

Y=20(xi,yi) (2)

where the summation is to be extended over all points that lie in the
test area. For a fixed area A and a given photographic plate, Y will
have a fixed value. If one evaluates a great number of plates which
have arisen from the same experiment, i. e. from the same function

p(x,y) with the same constant k, one will obtain different values of

aanailailiaf s dessiia



Y. Let p{(u) be the probability density of Y taking on values u. Fig.1
shows such a probability density curve., The area under the curve is
the probability of finding a test result between u =-» and u=++», This
probability is 1, The average value of Y is defined by

400
My = [ u plu)du (3)

-0
In our measurements the quantity that is to be determined will be
approximately proportional to the average value; but naturally, indi-
vidual measurements will give results that are scattered around the
average value. To characterize the width of the scatter one introduces

the ariance which is defined by

+e0
= (u-My)° p(u)au (4)

To show how the variaice is connected with the width of the curve,
let us fir st assume that the probability is constant over values Y
which deviate from the average by at most b. (In other words b is the
half width of a rectangular distribution). Then the probability density

is 1/2b and one obtains for the variance

i +b 5 bz
= — -M O =
V l{ (u Y) d(u MY)

Y 2b. 3
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i.e, in this case

b=rW‘Y (5)

where r=A3

Frequently, e¢.g. if the number of points in the test area is large,
the distribution will be close to normal, as can be shown by means of
the Central Limit Theorem (see[1] page 180). Then, since the distri-
bution extends to infinity, b can no longer be defined as the half width
of the area which contains all the points. It is then considered as the
half width of an area that contains a fraction (1 - ¢) of all points, We

can use (5) again; 7 is given as a function of @ in the following table

a l-a T
. 317 . 683
. 045 . 955 2
. 003 . 997 3
. 100 . 900 1. 64
. 050 . 950 1.96
.010 « 990 2.58

The value of 7 which we obtained previously for a rectangular
distribution then corresponds to an ¢ of about 0.1, i.e. 90% of the

measurements will fall within the region

M 1.6 »vK




It is not impossible to determine the probability density curves
for the experiments to be described in this report. They may be
obtained from the characteristic functions given in Appendix I. Here
we mention only two results., The average value of infinitely many
measurements (i.e. for an identical test area in infinitely many photo-

graphic plates) is given by

LJY =k [[ p(x,y) 0 (x,y)dxdy (6)
A

The variance is given by

2 .
VY =k [[p(x,v¥)0 (x,y)dxdy (7}
A
In making measurements one will define © in such a manner,

that the average value M_, is directly related to the quantity which

Y
one wants to find. Then one can compute from (7) the variance
incurred in such a measurement and determine from it probable
bounds for the errors which may arise, if one uses Y as an approxi-
mation for MY’ Examples will be given in the next section,

Later another result of probability theory will be needed. The
quantity as defined by the right hand side of (6) is in general only an
approximation to the quantity which is to be determined. One reason

is, that the form of (6) is an average over an area, while we are

frequently interested in local values. To fix the ideas take the local

8
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value of p (x,y). This local value of p must be approximated by an

integral MY over an area. In general this average MY will not be

equal to the value of p at the desired point. The difference depends
upon the character of the functions p and 0, and it will vary with
x and y; basically it depends upon the properties of the photograph.

Thus the quantity M, - even if suitably defined - is only an approxi-

Y

mation to p and the difference M_, - p possesses a variance, which

Y

we shall denote by V In estimating M_ by counting the number of

1’ 4

grains within the area and calculating Y another error is incurred

which has a variance VY. Now probability theory gives the following
result: If the two probabilistic processes are independent then the
result will have a variance given by the sum of the two variances.

3. Examgle 8

Some examples may show how these results are applied to

specific situations., (a) Let us assume that p is constant (but unknown)

and that we want to determine its value. Taking a rectangular test area

with sides 2a and 2b one finds

+a +b

M, =kp [ [ 0 (x,y)dxdy
Y -a-b

p= My

ab

k [ [ 6(x,y)dxdy
-a=b

il
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The last equation shows the relation between tiie desired value p

p is proportional to M_ and the factor of

and the average value M -

Yo

proportionality is known, The variance is given by

ta+b ,
V, =kp [ [ 6 (x,y) dxdy
Y -a =b

In these formulae O is still arbitrary. Let

6=1

then MY = kp4ab

MY is then the average number of points N in the area. The variance

is

y = = =N
V, = kpdab = My

Using Eq. (5) for the width of the probability curve one finds as

measure for the relative error

€ =

LI 2 (8)
My N

Here T must be taken from the table given in Section 2, If a=, 003
and N =10, 000 one would obtain a relative error in the order of 3%;

for N =100 one would obtain 30% relative error. For a=,10 the

relative error with 1000 points is 5.2%. This mav be considered as

10




tolerable. About 1000 points in the test area appears to be the minimum
that should be used.

One might try to reduce the variance by choosing another function 0.
Unfortunately 6 = constant is the best choice. Let us pose the problem

of minimizing the variance while the average value M, is kept constant:

Y

[f 8(x,y) dxdy = constant
A

2 .
[J 87 (x,y) dxdy = minimum
A

Tais is a simple problem of the calculus of variations. Introducing

a Lagrangian multiplier A cne obtains an equivalent problem:

/I {ez(x.y)+ A 0 (x,y)} dxdy = minimum

A

Hence
JI606{206(x,y)+ \ }dxdy = 0
A

or

0=- :‘— = constant
In computing the relative error the choice of the constant in the

11
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last equation is unessential. We set 6 =1, and thus find that the above
choice of 6 was optimal,

(b) Let

x
p=po[l+al;+bl%]; (9)
we try to determine p at x=0, y=0. Choosing 6 = 1 we obtain

MY = kpo 4ab

Thus MY is proportional to Po at the origin, which shows that

this choice of 8 is suitable for the desired measurement. The

variance is found to be

+a +b
V. =k 2 bA
. P _f_£(1+ala + b, £) dxdy
= 4kpoa.b

Again these quantities can be expressed by means of the average
number of points N in the test area, and one obtains the same result
for the relative error as in (8.)

Let us again consider the minimum problem for 6. The function
0 (x,y) must be chosen such that only the constant term in the above

expression for p will give a contribution to M Let

Yo

12
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p (% y) =

x/a

pz (x' Y)

y/b

P3 (x' Y)

Then we must determine 0 (x,y) in such a manner that

+a +b

I Jotxy)p (x,y) dxdy = 1 (10a)
-a =b

+3 +

? ?e(x.y)p (x,y) dxdy = 0 (10b)
-a =b 2
+a +b

I [ 0(xy) oy (x.y) dxdy = 0 (10c)
-3 =

+a +b 2

/ f(p +a,p +b p )0 (x,y)dxdy= minimum (10d)
-a - 1 172 173

By variational calculus one obtains
NPt APyt Agp,

0(x,y) =
Py + al p2+ blp3

where xl ’ )‘2 and x3 must be determined from conditions (10a, b, c).

By chance this problem possesses a simple solution. If we set

13




one finds 6 =1, The conditions (10b) and (10c) are automatically
fulfilled, The condition {10a) is unessential, it could be fulfilled by
choosing a suitable constant for 6, instead of 6=1. But sucha
constant would drop out in the determination of the relative accuracy €.
Thus we find, that even for a p surface that possesses a gradient,
0= 1 is the best choice for the weight function.
(c) Going one step further one might consider a function p which

is represented in a certain area by

v

P =Py (1+a1x + a,y + a3xZ + a, xy + asyz)

To obtain sumple results we assume that p is nearly constant. Then

by calculus of variations one finds

9~X+Xx+ky+kx2+k 6yz

Rl 3 4 5 XY +A

14




with the additional conditicns

ffedxdy =1  (lla) [ fox% dxdy=0 (11d)
A A

J ] oxdxdy=0 (11b) [ [oxy dxdy =0 (1le)
A

f[foydxdy=0 (11lc) ffeyzdxdy=0 (11f)
A

For reasons of symmetry one finds from (11b) A\, =0, from
(llc) A3= 0, from (lle) ) 5= 0. If we consider a region A which
does not change if the x and y axis are interchanged, one further-

more finds X4= )‘6 . Let Xl=l. We now have

0= l+x6(xz+yz)
with the additional conditions

ffexzdxdy=0
A

INK: yzdxdy=0
A

or ffe(xz+yz)dxdy=0
A

15




If we consider a circular region of radius 1* then this con-

dition will give

1
f(l+x6r2)r3dr=0
0
x6=-3/Z
Thus
3 2
0=1- > r

With this value one obtains for the average measurement

! 3 2 1
MY=21rkpo({(l-Er )rdr = 2 wkp,
The variance is
1 2
3 2 1
VY-Zwpr{;(l-Er) rdr-zwkpo

The number of points in the région is N= nkpo
Thus the average of the measured quantity is N/4
and the variance is N/4

The relative error is

*Since the scale of the x and y coordinates should be unessential, it

can always be chosen in such a manner, that at the boundaries x=1, or

y=1,0or r=1 (whichever is convenient).

16
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If one would have omitted the conditions that the result has to
be sensitive against contributions of xz and yz in p then the

relative error would have been 1/2 of this amount, viz

€=W

For comparison the same computation may be carried out for

a square region.
2 2
0=1+x6(x +y?)

)‘6 is determined from the condition

[ [ox% dxdy =0

A
Thus
{\f [XZ+X6(x4+xZ y2 )] dxdy = 0
Ng=- %Z
Thus

15 2 2
6=1- 1z (x +y )

o ad 15, 2 2 8
M, =4kp [ [ 6dxdy=4kp, [[[1- == (x +v )]dxdy= = kp
Y 000 000 14 770

The number of points in this region is 4kp0 =N

17




Thus

The variance is found to be

11 2
15,6 2 2 8
VY—4kp°6f({[l- -l—4(x +y )]dXdy-7kPO_MY

: didei

Here the relative error is given by

i.e. for the square the relative error is somewhat smaller than for

a circle if the same number of points is used.

The limitations of this procedure are quite obvious. While in
principle it is possible to exclude by constraints the influence of i
additional terms in a development for p each constraint may make
the function 6 more eneven and thus increase the variance. We
shall take up this question later.
To show another variation of this technique let us try to determine
a procedure for finding the first derivative of a given function in the x
direction.

Given

p=p°(l+a1x+a2y) (12)

18




Assume again that a, and a, are small, so that p~ Po+ Then

an optimal expression 6 has the form

0= X1+X2x+h3y

subject to the conditions

[[oxdxdy = 1
A
J[edxdy =0
A
J[0ydxdy =0
A

The second condition gives immediately A\, = 0, the third one

1

x3= 0. Let the test area be a square of side 2a. The first con-

dition yields

3
0z — x (13)
4a4
One then finds
+a +a
MY =-aj-)a' 0 (x) p (x)dxdy = alkpo

Let N' = kpo be the expected number of points per unit of area

(cf. (1}). Then




Hence

M
a = —Y (14)
1 N!
The variance is
+a+a kp
3 0 I N
= » = o= = == == 15

=-a =-a

According to the remarks in Section 2 the half width of a region

which contains a fraction 1 - ¢ of all measurements is T'J-VY .

The uncertainty in the measured values of Y can be expressed

as an uncertainty in the values of a If the measurement Y

1 L]
deviates from MY by nvK then one obtains from (14) as devi-

ation in al

Ny 3

L7 N 2%

For a=0.1(cf. Section 2) one finds 7=1.6 and

Al = 2.76

: (16)
Zaz'sm"

For a=1 the average number of points in the test area is 4N'.

Assume 42:° =900, Then

Aa1 = 0.092

20
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The significance of a, can be seen from Eq (12). The uncertainty

1

in a, just found ia rather large. Eq (16) shows how the size of the

test area will influence the accuracy.

4. More general distribution of p

In previous considerations we assumed a certain form of the
functions and then determined the accuracy with which the value at
a given point could be obtained. The result was invariably that the
region whould be taken as large as possible. A limit arises naturally
by the fact that the analytic expressions for p used here will repre-~
sent the actual p (x,y) in a limited region only. For functions p as
they occur in practice the expressions

My = [ ] 8(x,y)p(x. y) dxdy
A

are only approximations of the desired quantities p or grad p.

To extend the techniques used so far to more and more complex
analytical expressions for p would be rather useless, for with this
process the variance will increase. Therefore we must accept the

fact that the average values M,, which we determine are only

Y
approximations of the desired quantities.

In the following discussions we shall use for the determination
of p at a given point an approximation which is based on the assump-

tion that in the area considered p is a linear function of x and y.

Correspondingly 6 = 1, The value p in the center of the area is then

21
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approximately proportional to

+a +a

My = [ [ p(x,y)dxdy
-3 =-a

where the origin of the xy - system lies at the center of the region
considered.

On a given photograph there exist lines of constant p . Let us
consider along one of these lines, say p = Py’ great number of
equidistant points. These points may be numbered as 1,2... j...
their coordinates will be (xl, yl) o e (xj, yj) «ee « We then obtain

for the value MY for point j

yj+a yj+a
M, .=[ [ pixy)dxdy

Y] y.-a y.-a
J J

Since the value of MY will vary from point to point (although all

points j lie on a line p =constant), one may regard MY itself as a

rondom function. For this random function there exists a probability

distribution, which gives the probability density for MY to take on

given values. For our measurements these values MY would be
interpreted as proportional to Po* Obviously this probability distri-
bution and its variance is determined by the character of the object.

Intuitively it is clear that for an object for which p varies only slowly,

MY has a smaller variance than for an object with rather abrupt

changes. In general the values of this variance must be estimated.
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But it may be of some interest to see how this variance can be
determined in principle.
Assume for this purpose that for the vicinity of the point

(xj, yj) described above, p is actually of the form

2 2
= 14 . -x. )+a. . -y.})+a, .(x-x.) +a, .(y-y.
p po[ al'J(x J) Z,J(y YJ) 3’1( J) 4,J(Y YJ) ]

The deviation of MY ; from the value Po is easily computed as
4 4
My,j " Po= 3 Pplagtayla

The quantity a_+a, can be considered as a random variable

3 4
which takes on the values a, ; + a, I for the points considered and
possesses a variance V . We assume that the average of the
(a3 + a4)
random variable a, + a, is
4+ o0

M(a3+ a4) =-£ (a3+ a4)p(a3+ a4)d(a3+ a4) =0

The variance

4+ o

2
V(a3+ a4) = _.{ ,(a3+ a4) p(a3+ a4) d (a3+a4)

is considered as known.

23




The variance of MY about the correct value p 0 is then given

_ 2 2 16 8
J(My) = fpo (a3+ a4) 5 2 p(a3+ a4)d(a3+ a4)

hence

1
V(My) = —;— a8 POZ v(a3+a4)

The value of this calculation lies in the fact that it shows how
V(My) can be computed and how it depends upon "a' and other
known quantities. Naturally for other assumed representations of
p, a similar computation can be carried out.

V(My) is the variance of the average measurement MY from
the light density Po° For each value Po of the light density occur-
ing in a given picture the variance V(My) can be determined.

Since 4poa2 is the number of points N in the region considered,

the last result can also be written as

Nza.4
VIM, )= =—— V
y 9 (a3+ a4)

The variance which occurs in the measurement of p has been

shown in Section 3, Example a, to be N, According to the thevrem

quoted at the end of Cection 2 the two variances must be added. Thus
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the total variance of the measurement of Y about p 0 is

2 4
N a
N+ —m V
9 (a3+a4)

The measure for the relative error is then

€= 9 Vegtay

Since N=4p° az. one has

2. 16 2 8
T \J4p,a + = p, V a
2
4po a
To obtain best conditions this quantity must be minimized,
i. e. one must determine the minimum of
4
_Po_ 2 _{?é V(a +a )a4
al 3 4
Hence
9 1/6
a=( ) (18)

8V
(a3 + 34)p0

This equation defines the best size of the region. One will

notice that this result depends upon the value of Pos therefore,

25




'a" must be expected to vary with Por Among the values of "a"

so obtained from one photograph one must choose a suitable value.

Since V is in general not known, this discussion is
(a3 + a4)

somewhat academic, but it shows how the size of the test region
is connected to the character of the photograph.
No essential changes would occur if instead of {12) a different

form of p would be assumed, e.g.
p= po(l+alx+azy ta, |x|+a4 lyl)

5. Scanning for Special Patterns

The examples up to now were concerned with the determination
of p and of grad . It may occur that certain special patterns of
the light distribution are of importance and one might try to detect
them. These patterns might be of such a nature that they would be
averaged out if one simply determines p and tries to recognize
them afterwards. An extreme example may be diffraction rings in
a telescope due to the finiteness of the aperture. They may be rather
completely hidden in the background light. More practical examples
are sharp lines like streets or rivers which are so narrow that they
become rather in?istinct. Also the question may arise whether along
a certain line the density jumps, or whether there is a gradient. Such

cases are covered by our previous investigations. If the function Pl
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describes the pattern which is to be recognized, and Py and Py
are functions which should be suppressed, and if p is nearly

constant, then the function 0(x,y) has the form

6=le +A\ +A

1 ThaP TA4P,

and the \'s are to be determined from the conditions that the
influence of P, and Ps must be suppressed.

Assume e, g. that Py is the distribution due to the Newton ring,
and that P, = 1 is the background light,

Let
p=pgllta p,)

then one has 6=pl + sz

and from [ [ 8p, dxdy=0
A

one obtains, setting p 2 =1

M= ffPldXdY

A

>l

i.e. 0 is equal to G minus a constant which makes the average of
® over A zero.

The average of the measurements is then

My =kpg2, &“"1" Ap,) ey dxdy (19)
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The variance of the measurement is

2
VY"kPo{\“"l*' Ap,)" dxdy (20)

To get a feel for the orders of magnitude let us assume that
the area considered is A, and that the function Py is 1 in the
area y, A and is zero in the rest of the region, where Yo isa
constant between 0 and 1 (See Fig 2.) Further, for simplicity,

let a1 be small, Then

JIp dxdy= vy A
A

x=-y°

(- -]
!

S P17 Yo P
The average measurement will give
=kpoal AYO(I'YO) = Na'l YO(I'YO)

Let N' = NYO be the number of points in the area where Py # 0,

- - '
Then MY- al(l YO)N
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The variance is

- - 4 - = ] -
VY-kpoyo(l yo) Nyo(l Yo) N'(1 yo)

We proceed by analogy to the treatment of the density gradient.
The half width of a region in which a fraction (1 ~a) of all measure-
ments Y are contained is given by 7 'J—VY 5

One may ask for which value of a, the half width equals the

1
expected value MY ; one finds
a = ___T_. (21)
Nji “Yo VAL

The aim should be to make this value small. One limited possi-
bility is the choice of Yo However, if we keep N' fixed and
choose Yo small, then we increase the total test area, while the
area belonging to the pattern is the same. In this process we
would encounter additional errors due to the nonuniformity of the
background field. A value of ' 1/2 appears reasonable. Using

T = 1.6 (corresponding to a = 0, 1) one obtains

) 1.6
S BN PN

For a, = 0 1, i.e. for a pattern which is 10% darker than the

1 2(1. 6)°
background, the pattern must contain N' = —LE-—)— = 512 points to
a
1
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meet this condition.

This approach applirs to patterns of any kind. One might, e, g.
try to recognize a straight line of points arranged over a certain
width, In this case one would consider a test area of about twice
the expected width extending in the direction of the expected straight
line. (This description shows that, for the purpose, the testing will
be done with a rather narrow rectangular test area, which must
eventually be rotated if one tries to scan for straight lines of differ-
ent direction.) Eq (21) applies immediately and allows us to determine
the limit where a pattern can still be recognized.

One may ask, what will happen if one tests for a pattern which
differs from the pattern which occurs in the picture. Let us assume
that the line where the darkness occurs has actually one half the width
of what we expect it to have and that its density is twice what we
expect it to have, i.e. that the value a, is now twice the value of the
previous case. Then since the number of grains in A and in the
pattern is the same as before, one obtains from the calculations the

same value a, as before. In reality a, is twice this calculated value.

1 1

The variance has the same value as before, Furthermore, if the
proper width had been used, then N' would be one-half of the original
value and the true value of a1 now is N2 times the calculated value

of al. This shows that the scanning should be adapted to the pattern

as well as possible,
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A step in p in the x direction may be described by

-1 for x<0

Pl

Py +1 for x>0

To scan for such a step one must choose a function 6 which will
not register a constant background density, or a densitv gradient,
or a step in the y direction,

Let

p, = 1
Plg| = &
Pg =Y
Pg = -1 for y<0
Pg = +1 for y>0

Then one has

O=py+ NP4 NP3t A e, v A Py
with the additional conditions
[] e Py dxdy # 0 (22a)

A
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[l op dxdy=0, i=2,3...5 (22b)
A

These are 4 conditions determining )‘2‘ .o )‘5 . ALl \'s except

X3 turn out to be zero. This is seen if one assumes 0 to have the

form

0=p, +\p, (23)

Since Py and py are odd functions of x while G and P

' Py

are even functions of x, it is immediately obvious that condition
(22b), is fulfilled by (23).

For an interval -a< x< a, one obtains from (22c¢)

+a
Joexdx =0
-a

and hence
\ =- 3 l
2 a

In determining the mean value we can omit all contributions to

P which is due to Py ee Pg e Let

p=ppllta p,)

The average measurement is

+ab 8
-a-b
a1 N
=kalp0 ab = 1
32
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In determining the variance it is assumed that p is nearly constant;
actually this assumption is not needed with the present choice of Pge

One obtains,

ab 3 xZ
Vy=2kpy [ J(1- 5 =) dxdy
Y 0-b 2 a

=] Z

The discussion carried out in conjunction with (21) applies
again. In order to obtain the same limit where a pattern can still
be recognized, the number N in the present case must be 4 (1 - yo)
times as large as before.

Quite obviously, if the step in the photograph occurs at a
position different from x=0 and we test for a step at x=0, we
shall obtain a result which indicates the presence of a step. The
same applies if the step does not extend parallet to the y-axis, but
is inclined to it. In principle, it might be feasible to add conditions
which would guard against misinterpretations of this kind, but
because of the large number of grains required, the practical value
of such a method is doubtful, One would probably make the test
indicated here for different locations of the jump and for different
directions of it and then place the jump in the position where the
indication is maximum,

6. Recognition of Darker Spots Against a Uniform Background

The previous section dealt with the problem of measuring certain




defined quantities and of determining confidence limits for these
measurements, In this section we treat a case where we know
that the light density can assume two values, that of the background
and that of the signal which raises the light density slightly above
the background. We want to discriminate between areas of this
background light density and of the higher light density.

To be specific, let us assume that the plate is divided into a
rather large number of areas of equal size (e.g. squares) and
that these squares have been exposed to the background light or to
the background light plue the light of the signal. In a fraction g
of all squares we have the background light and corresponding to it
a value Nl as expected number of grains; in the remaining fraction

(1 -p) we have background plus signal and correspondingly an

expected number of grains N For convenience of discussion, if

20

an area has an expected number of grains equal to N,, we shall say

1

it "belongs to Nl”' Let N1< N2 . The regions corresponding to

the signal (NZ) are to be found. For this purpose we count the
number of grains in each area and consider the areas below a certain

cut off count m as belonging to N, all areas above the cut off count

1
as belonging to N2 c
m should be chosen in such a manner that the probable number

of wrong decisions is minimized. (This formulation is not the only

possible one, one might e. g. count an error committed by missing a
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dark spot more heavily than an error where a light spot is considered
as dark.)
The probability of finding n grains in an area which belongs to

an expected value Nl is given by a Poisson distribution. Therefore,

if = is the cutoff count, the probability of misjudging areas belonging

to N, as areas belonging to N

1 is given by

Z

@ n
p e N1z N

m n!

The probability of misjudging areas belonging to N_ as areas belong-

2

ing to Nl is

m-1N
(1-p) e N2 g 2
-00 n!

Thus the probavilitv of making an error is

_N; n i m-1 ..n
p =PBe 3 _N_l + (1-B) e N s N; (24)
e m  n! P T

n!

To find a condition for m, we increase and decease the cutoff count
m by one; in either case the error probability must rise. In the first

case the error probability chahges by

N
-B e ——~ t+(1-B) e — (25)
m! L
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In the second case it changes by

m'l N Nm-l
MONLepeT 2 J20 ) (25b)

ere———

N
e (m-1)! (m-1)!

If m corresponds to a minimum probabiiity of making an error
both expressions must be positive. The second expression origi-
nates from the first one by a sign change and by replacing m by
m-1. If one replaces m by x and considers (25a) as a function
of the continuously varying variable x, then this function must
have a zero between m-1 and m. From this condition the cutoff

count can be determined. From the equation

X N X

N N . =2 N
e ! 1 +(1-pe T2 =0
x! x!
one obtains
X =x'4+x"
where
*
X = ____L_ , x'" = N
-in N2 In _2
Nl Nl

* The symbol In represents ' the natural logarithm of"
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In practice it may be possible to change the size of the test areas

while the ratio N.2 /Nl is fixed, Of particular interest is the case

where NZ/NI is close to one, Let

N
2=y
1
Then
]
1-*
S = An B
=ln Y,
The expression x' does not depend explicitly upon Nl or NZ T

only upon their ratio. It gives a constant shift in the cutoff count
which is independent of the size of the test areas (which is charac- 4
terized by Nl or NZ ). The quantity x" is best described in an

intuitive manner by the expression

"_
5 - x Nl
NZ-Nl
i.e. by the quotient of x' - Nl and NZ - Nl. One finds
b
In Yy Yl‘l

This quantity is shown in Fig. 3; it is rather close to % .
Of prime interest are actual values for the probability of making
errors. To compute these the Poisson distributions in (24) are replaced

*The symbol In represents 'the natural logarithm of"
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by the corresponding normal distributions, and the sums by integrals,

(the admissibility of this approximation is shown in Appendix II). One

then finds
2 2
~(x+3-N)) “(x+3-N,)
L 7oe N g =2 :[n-t 2Nz ax
= - e
Pe =P TEN, m-4 NZwN, -

Introducing in the first integral

- x+%'-N1
NN,
and in the second integral
q = x+%—N2
VN,
one obtains
1 2 2
P = — © -u uz
e 3 g fu e 2—du+(l-p)f e~ da
1 - 2
1 1

= 2
where u, = x N -
1 +6(y1 l)N1

i 1 1
-2 5

-2 -
=y INT T 1) vy P

N

1

38

irteak e i




TT S ST ORIy ey

The values for these integrals in terms of the upper limit can be
found in tables, Some examples are given in Figs. 4 through 12,
N

In the examples Y, = _i =1.1, 1.5, and 2. 0. Forpthe values

1 N,
0.1, 0.5, and 0.9 have been chosen. The value of Ni varies from
50 to 1000. The probability of making an error should be compared
with (1-B) which indicates in how many of the cases a signal is
present. As B is reduced this ratio becomes rather high although

the probability of making an error is reduced.

7. A Comparison of Two Techniques of Assigning a Light Density

to a Single Area of Lesser Intensity than the Surroundings

A ssume now that we look at a given area, a portion of the photo-
graphic plate, which we shall designate as the " test area'". The
number of grains which we count is n. We want to decide whether

this test area corresponds to an expected number Nl or to some

alternative expected number N_, N_> N1 (without specifying what

2’ T2

N2 is).

Two different strategies for inaking this decision will be com-~
pared: We choose a number r, r>1., In Strategy 1, we count the
number of grains in the test area. If it is below rN, we consider

1

this area as belonging to N In Strategy 2, the test area is sub-

1 .
divided into smaller areas (for the sake of argument, into nine sub-

areas, let us say). Let N|= N1/9 . We choose another number

r!', r'>1, Then we determine for each of the smaller areas whether
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the count is smaller than r' N'l . To the original test area we then
assign the count N, if more than half of the subareas have a count
smaller than r'N',
Several questions immediately arise:
(1) How shall we choose r and r'?
(2) Which strategy is superior ?
(3) How much better quantitatively is the superior method ?
Intuitively one might consider Strategy 1 (using the whole area)
as superior; however Strategy 2 (by subareas) may recommend itself
for practical reasons. The object of this section is to determine
quantitatively r, r' and the probabilities of error in either case.
As stated in Section 6 (cf p. 35), there are two possibilities for
making a wrong decision:
(1) misjudging the test area as not belonging to N1 when it
actually does belong to Nl (This is called '"Type I error');
(2) misjudging the test area as belonging to Nl when it actually

belongs to some other number N,, N different from Nl

2 2

(This is called "Type Il error' ). In this section N2 is

greater than Nl .
For a number Nl (or equivalently, N'l) and a fixed value of
r(or r') one can calculate the probability of making a wrong decision of

Type 1 for each of the strategies., The probability of making a wrong

decision of Type 2 is then a function of N2 for each of the strategies.
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Intuitively one can see that the closer N2 is to N1 the greater is
the probability of making a wrong decision,

Consider Strategy 1 (whole area method). We assume that the
energy density of the incoming light is constant over the test area.
To fix the argument let us temporarily assume that the test area has
an expected value of Nl' Under Strategy 1 we will decide that the test
area does not belong to Nl if the number of grains counted is greater
than er. Let P be the probability that we misjudge the test area
(with expected value Nl) as not belonging to Nl' using Strategy 1.

Then

Niw (Nl)n

P=e b2
[er+1] n!

where the brackets indicate ''largest integer in''.

Then
(x-N )°
p ® 2lTer r; e ZNI dx for Nl =z5
x-Nl
Let u-= '\/I_\I—l

Then P is approximately given by

uf2

1 0 =

L r% d
NFX (r-l)'\/_ﬁl

P = u =
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Column 4 of Table 1 gives values for P corresponding to
(r-1)¥N] = 0(.1)1.2.

Now consider Strategy 2 (subarea method). If the expected
number of grains in the test area is Nl’ then the expected
number of grains in each subarea is N'l where N'1 =Nl/9 » and
the probability of finding n grains in any subarea is given by a
Poisson distribution with A = N'1 . Under Strategy 2 we will decide
that a subarea does not belong to N'1 if the number of grains counted
is greater than r'N'. Let P, be the probability that we misjudge

1

a subarea (with expected value N'1 ) as not belonging to N'l . The

subscript s denotes the subarea method.

Then
Noe (NP
P =e P 1
L [r'N'l+1] n!
L e - b -
[~ ,\/m'.l r'N'e pYe dx for 1 =5
1 1
Let u= x=N
VN
Then
2
1 w© -u/
p = 2 du

[ e
NI (pWET

In the case r'=r, Column 2 of Table I gives values of P, for
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(r-1) NNT=0(.1)1.2.

Further, we will decide that the original test area does not
belong to N1 if more than half of the subareas have a count
greater than r'Nj. Let P8 be the probability (using the subarea

method) that we misjudge the test area (with expected value N 1)

as not belonging to N Since the number of grains counted in

1 L]
each subarea is i.»dependent of that for any other subarea, this

probability is a sum of binomial terms, viz:
¢ 99 8 9. 7 2 9 6 3
P o=p + () pg (1-p )+ (;)pg (1-pg) +(3)p_(1-p)

+() > (1-p )

where pZ is the probability that all nine subareas with expected

value N'1 are misjudged as not belonging to N'1 2

9, 8 . ey
( ] ) P (l-ps) is the probability that eight subareas are mis-
judged as not belonging to N' {and one subarea is correctly

judged as belonging to N'l);

(Z)p: (l-ps)4 is the probability that five subareas are mis-
judged as belonging to N‘1 (and the other four subareas are correctly
judged as belonging to N'l).

There are several possible ways to obtain Ps once P is known.

One is to interpolate between values given in a table such as the
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Tables of the Cumulative Binomial Probability Distribution (Harvard
University, Cambridge University Press, 1955). Another possibility

is to interpolate in a table such as Tables of the Incomplete Beta-

function Ratio (edited by Karl Pearson, Biometrika Office, University

College, London 1934) since it can be shown (see Kendall (1], p.120)

that

Ps = Ip (5,5) = 1-11_p (5,5)

where Ix(p,q) is the incomplete Beta-function ratio. However, here
it was more convenient to calculate Ps directly from P, with the use
of an E-101 Burroughs electronic computer. The results are given
in Tablel. For example, when r'=r, Column 3 of Tabl.. I gives
values of Ps corresponding to (r-1)NN'=0(0.1)1.2.

The values of P and p_ can be obtained by using a table such as
Tables of Probability Functions, Volume II (Mathematical Tables
Projects, National Bureau of Standards, 1942).

For the case that r'=r, the last column of Table I compares
the Type I error probability of Strategy 1 {whole area method) with
that of Strategy 2 (subarea method) in the form of a ratio, P/Ps g
Strategy 1 gives lower error probabilities for all values listed; the
difference is more pronounced if the Type I error probability is low

(50% error means no judgement at all)., Let r=1.05. This would
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correspond to a case where we want to discriminate between two
light densities which differ by 10% and where we lay the cut off
grain count into the middle, Let N'=100, which corresponds to
900 points in the larger square; then (r-1) NN'=.5 and the proba-
bility of making a Type I error is 0, 1096 with Strategy 2 versus
.066= with Strategy 1.
Thus far we have discussed only probabilities of wrong decisions
of Type I for the two strategies (see pag= 41). Consider now the wrong
decisions of Type II for the two strategies, i. e. misjudging the test area

with expected value NZ’ NZ >Nl’ as belonging to Nl'

For Strategy 1 (whole area method), we now consider the test area

to have an expected value NZ’ where NZ =Y, Nl Y, >1. Under Strategy 1

we will decide that a subarea lLelorngs to N, if the number of grains

1

counted is less than er. Let Q be the probability that we misjudge the

test area (with expected value NZ) as belonging to Nl'

Then
N, [rN}1] (N,)
Q=e 2 5 2
0 n!
(x-N_)°
LNy, - - dx for N_ =5
o J e ZN x for =
VTN, -= 2 2
x-N>
Letu=w-
2
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Then Q= (5)

2
-u./Z du

where Nz = YlNl

For Strategy 2, a subarea has an expected number of grains N'z,
where N'2 =le1/9, and the probability of finding n grains in any sub-

area is a Poisson distribution with A =Né. Under Strategy 2 we will

decide that a subarea belongs to N'1 if the number of grains counted

is less than r'N'l . Let 9, be the probability that we misjudge a sub-

area with expected value N! as belonging to N'l.

2
Then
Ny [N}] ey
=e 2 1 2)
qs 2(‘.) n!
2
or ~ 1 )
NZaNL e’ 2Ny dx  for N'=5
x-N!
Let u= 2
Q’Nl
2
Then
2 2
o L Y1 -u =L M2 <y
Sy N1 _L e 5 du= NeT _i e du (6)
e (r'-y W)
where v, = —m———— , U = ——————
1 NN} e Wy,

Furthermore, we will decide that the original test area belongs to Nl ’

if more than half of the subareas have a count less than r'N'l. Let
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Qs be the probability (using the subarea method) that we misjudge
the test area (with expected value NZ) as belonging to Nl.

Then, this probability is again = sum of binomial terms:

9

8 7 2 6 3
Q =a)+()as (- )+ () (1-q)%+ () ¢ (1-q))

H)) q) (1-q )*

where qz is the probability that all nine subareas with expected

value N! are misjudged as belonging to Nl

2

(z) qg (l-qs) is the probability that eight subareas with expected
value Né are misjudged as belonging to N'l (and one subarea is
correctly judged as not belonging to N'l);
(Z) q:(l-qs)4 is the probability that five subareas are misjudged as
belonging to N'l (and four subareas are correctly judged as not
belonging to N'l) .

One again has the relationship:

Qs = Iqs(S,S) =1- Iqs(S,S)

where Ix(p’ q) is the incomplete Beta-function ratio.

We now have the necessary formulas to enable us to compare the

effectiveness of the two methods for deciding whether the light density
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of the test area is Nl' To make the discussion more explicit let us
fix the value of Y, at y, = 1.1. We set the probabilities of errors of
Type I, P and P' , at some common small positive value (less than one).
The values .10, .05, and .01 are used here. Then we solve for the
corresponding values (r-l)'\/-N'l and (r'-l)'\/-N'l . (For a given value of
Nl' we can then find the appropriate r and r'. Values of « and r'

are given in Tables II(a) and II(b), respectively, for P=Ps='l°' .05, .01,
with values of Nl ranging from 5 to 1000 for r'.

With these values of r and r', and a value of v we then calculate
the probabilities of making Type II errors, Q and Qs. for the two methods
(using the above formulas). Values of Q and Qs are listed in Table III
for P=Ps='l°' .05, .01, with values of Y, ranging from 1.1 to 2.0
and values of Nl ranging from 50 to 1000,

Note that Q is always less than Qs for these values of a. This

evidence tells us that Strategy 1l using the whole area is the better

method.

As an illustration of a use of Tables Ila and b and Table III,
consider T 1.1. This corresponds to the case where the back-
ground light intensity is 10% darker. If we set r=1,05 (i.e., we
lay the cutoff grain count for the whole-area method in the middle)

and P =, 05 then the table for r yields N.,=1000. And the corre-

1

sponding value of r' (the cutoff grain count for the subarea method)
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would be 1.06 for Ps =.05. Thus, if the probability of Type I error
is set at . 05 for both methods, the probability of making Type II
error is . 1840 for Strategy 2 as compared with , 0740 for Strategy 1.
One can proceed further, using the formulas for P and Q (for
the whole area method), for example, in the following manner:
Set P and Q at pre -assigned small values. Then one
obtains a relationship between Y, and N1 .
For the case P=Q = . 05 one has:

+
(r- 1)~/N‘1=1.64485

and
re
! ~IN"l = -1, 64485
VY,

Eliminating r from the above two equations and solving for Y, one

obtains

+
1, 64485 2

ml’

Y, = (1+
Figure 13 gives the graph of Nl V8. Y, using the above equation.
N1 as plotted corresponds to the minimum expected number of grains
for the test area which is required such that neither of the probabilities
of Type I and Type II errors exceeds . 05 (for the whole area method).

For example, consider y 1 =2,0, This corresponds to the situation
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where the surroundings are twice as dark as the test area. The
graph yields 16 as the minimum required value for the expected
number of grains in the test area. The values of Y, correspond-
ing to various values of Nl from 5 to 1000 is given in the table

below,

N) V)

5 3,012
10 2.311
20 1.871
30 1. 691
40 1.588
50 1.519
100 1. 356

200 1. 246
500 1.153
1000 1.107

Another possible application of the above formula for P is the

determination of a 100{1-P)% confidence lower limit for N This

l.
can be obtained by a plot of er vs N1 corresponding to a pre-

assigned value of P. Then for a given value of n, the observed

number of grains (taken on the rN. axis),one obtains LN , a lower

1
axis,) Figure

1

100(1-P)% confidence limit for Nl (taken on the N1

14 gives the graph of LN vs n for P=,05 (95% confidence). To
1

illustrate the use of such a graph suppose that 10 points are counted
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in the test area, i.e. n=10, For P=,05, the corresponding value

for LN is 6. Hence a lower 95% confidence limit for the expected
1

number of grains in the test area is 6. In layman's language, this
means that if we count 10 points in the test area we can expect (with
a 95% chance of being right in the long run) the average number of
grains in the test area to be greater than or equal to 6,

If so desired, one may obtain upper 160(1-P)% confidence limits
for N1 by considering Y, < 1, and using a technique analogous to

that described above in this section,

8. Assigning a Light Density to a Single Area when Its Surroundings

Contain Both Lesser and Greater Intensities

As in Section 7, let the number of grains which we count in the
test area be n, We wish to decide whther this test area corresponds to

an expected number N. or to an alternative number N2 (without speci-

|

fying NZ)' However, now the only restriction on N2 is that it is

different from N1 F

The two strategies stated in Section 7 with suitable modifications

may again be compared. Choose two numbers I T, with r1<1,r2>1.

In Strategy 1 (using the whole area) we count the number of grains in

the test area. If it is greater than rlN1 and less than rZN1 we con-

sider this area as belonging to N Otherwise, we decide that the

1.

test area does not belong to N For Strategy 2, suppose the test area

1.

is subdivided into nine subareas again. Choose two numbers r'l, r'Z
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with r'l <l, r'2 >1. Then we determine for each of the subareas

whether the count is between r'lNl/9 and ré Nl/9. To the origi-

nal test area we then assign the count Nl if more than half of the

subareas have a count hetween r'lN1/9 and r::Nl/9. One now

has four numbers to choose: rl, r,, rt, ré .

2771

As in Section 7, it will be seen that Strategy 1 (using the whole
area) is superior to Strategy 2. We follow the same development
as given in Section 7 and obtain formulas for the Type I errors P, Ps
and the Type Il errors Q’Qs'

Thus if P is the probability, using Strategy 1, that we misjudge

the test area (with expected value Nl) as not belonging to N,, then

1

[r,N.]

171 n

Nyl 5 0 Ny, 5 (N
n=0 n! n=[r2Nl+l] n!

1 r| N 2
or PR IR (eeNpt L ] » S
N2tN) . e TN ¢nN) N 2N *

(l‘ -I)VN uZ

1 2 by A

f e~ 7 du for N, >5
NZm (rl'lNNl

= 1l-

r

It can be shown that good choices for pairs of values of X T,

are ones which yield symmetrical limits in the above integration, i.e.

such that (rl-l) = -(rz-l) . We will consider only symmetrical
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limits here
Thus PR ]- ) -yl
;7!" 0 e du

Table IV gives values of r, and rZ (for various values of Nl) such

1
that P=,10, .05, ,0l.

Now if Q is the probability, using Strategy 1, that we misjudge

the test area (with expected value NZ) as belonging to Nl’ then

Q= e-N2 [rZZ‘,Nl] (Np)
[r,N+1] =
&1 r2N) _(x-Np)? 1 frmWNN
S Z7K, frlNel N, T T W ez
(r -y, WN,
W)

*
where NZ = YlNl N >0, and sz 5

Substituting for T in terms of r, [using the symmetrical relation

(rl-l) =-(r2-l)] we obtain

(rz-1WN, (y,~INN,
1 2
) NZm I '\/—Y‘l_ '\/T’-l e-‘%- du for lelzs
~(r;-1NN, (v -INN,
Nyp N

*Note that may be less than or greater than one, since N> may be
Y1 y : 2 Yy

greater than or less than N for this case.
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As before, Ps is the prob:bility, using Strategy 2, that we
misjudge the test area (with expected value Nl) as not belonging

to Nl' By analogy to the argument used in the previous section,

we obtain the following formula for this case:

P =1 (5,5)
S

where Ix(p, q) is the incomplete Beta-function ratio

(r'z-l)'\/N'1
and p = 1-"'2— J e'ii du for N'=5
S \[217 0 2 1

As before, P, is the probability that we misjudge a subarea (with
expected value N'l) as not belonging to N'1 .

Finally, if Qs is the probability, using Strategy 2, that we mis-

judge the test area (with expected value NZ) as belonging to Nl' then

Q =1 5,5
Snigniss

where Ix(5, 5) is the incomplete Beta function ratio

————— At —T_ N 2
andq ~ _1_ f Yl e 2 du:—-l-—- f 3 Yl 1 __u_
s 2% 2 e 2 du
(r'l-yl)’JN'1 -(ré+y1)m'

with NZ= YlNl and NZZS
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As before, q is the probability that we misjudge a subarea (with

expected value N'Z ) as belonging to N'1 q

Proceeding as we did in Section 7, we set P and PB (the Type I
errors for the two methods) at some common value. Again the values
.10, .05, and .01 are used here. Then we obtain the corresponding
values of (rz-l) 'fﬁ-l and (1-'2-1)'\/N_'l using the formulas for P and PB

above., For a given value of N_ , we can then find the appropriate r

1 2

and ré. Furthermore, we can obtain the appropriate T and r'l using

the symmetry relations.

Values of r),r,are given in Table IV(a) and values of r‘l, r'2 are
given in Table IV(b) for P=PB=.10, .05, .01 with values of Nl ranging

from 5 to 1000 for (rl, rz) and from 50 to 1000 for (r'l, ré).

For given values of r and r', and a value of Y, We can calculate
Q and QB (the probatilities of Type Il errors for the two methods).
These are given .n Table V for P=PB=.10, .05, .01 with values of Y,

ranging from 0.5 to 2.0 and values of N, ranging from 50 to 1000,

1
As in the previous section, an examination of Table V reveals that

Q is always less than Qs for the values considered. This evidence

tells us that Strategy 1 (using the whole area) is, as expected, the better

method. For example, consider I 0.9. This corresponds to the case

where the test area is 10% lighter than the backgreund light intensity.

If we set T, = .94, T, = 1,06 and P=.05 then N1= 1000, The corre-

sponding values of r'l, rz' (for PS=.05) are r'l =,89 and r'Z =1,11. Thus,

if the probability of Type I error is set at .05 for both methods, the

55




probability of making Type II error is .10 for the whole area method
as contrasted with .57 for the subarea method.

Again, one can set P and Q at preassigned small values and
obtain a relationship between Y, and Nl‘ For the case P=Q=.,05
this expression is different from that obtained in Section 7.

Thus, when P=Q=.05 one has:

(r,-1 )JN1=1.95996

T,y . ¥
Also 2LNN % - 1,64485 for y >1
\/:{l
(-r, -y +Z)‘\I-N +
2"V 1
and — ———— ~ 1.64485 for y <1
Ny, L

Eliminating r., from these equations and solving for y, we obtain
&

: 2 2
Y, -Zml[cl sgn(yl-l)+'s/-f\l-l]+c2 tc, sgn(yl-l) \/;\/-N—l[cl sgn(yl-l)+'~/-f‘71]+cZ

ZNl

for yl>0

where c, = 1. 95996

+
c,= 1, 64485

Figure 15 gives the graph of Nl Vs Y, correspornding to the above equa-
tion. As in the previous section this value of Nl (for a given value of yl)

is the minimum expected number of grains for the test area which is
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required such that neither of the probabilities of Type I and Type II
errors exceeds .05 (for the whole area method). The values of Y,
from 5 to 1000 is given in the

corresponding to various values of Nl

table below.

N ey
1 1 (y,<1)
3.190 .0198x%
10 2.431 . 1674%
20 1. 952 c 345;
30 1. 756 . 4424
40 1. 643 . 5052
50 1. 569 . 5503
100 1. 390 . 6694
200 1.270 . 7600
500 1. 167 . 8447
1000 1.117 . 8890

As an example, the graph in Figure 15 yields Nl =18 for Yy = .31 and
2.1. Corresponding values of NZ for these values of Nl are respec-
tively 5.6 and 37.8. Thus if it is desired to distinguish between the
test area and surrounding areas containing either 0, 31 times as many
grains per area (on the average) as the test area, or 2.1 times as many
grains per area (on the average) as the test area, then the minimum
required number of grains in the test area (on the average) is 18 if

neither of the probabilities, P and Q, of Type I and Type Il errors is to

exceed .05. As another example of the use of Figure 5, suppose it is

*These figures are not accurate to four places since N2 <5 for these cases.
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desired to distinguish between the test area and surrounding areas
containing either 0.5 times as many grains per area or 2.0 times
as many grains per area as the test area. Then Y, ® 0.5 yields

Nl =40 and v, =2.0 yields N, =18 in the graph. The larger of the

1 1

two values for Nl' namely 40, then is the minimum required number
of grains in the test area if neither of the probabilities, P and Q, of
Type I and Type 1l errors is to exceed .05,

To obtain 100(1-P)% confidence intervals for N , plot r

1 lNl'

rZN1 versus N1 for a pre-assigned value of P. Then for a given

value of n {on the rlNl, r Nl axis) one obtains 100(1-P)% lower and

2

upper confidence limits for N axis), from this

1’ LN and UN (on the N

1 1
graph., Figure 16 gives the graphs of n versus (L

1

Nl. UN) for P=.10

.05 .01. For example, suppose that 10 points are counted in the test

area. Thus n=10, For P=,05, the corresponding values for LN and
1

UN are 7 and 19 respectively, This means that if we count 10 points
1

in the test area we can expect (wit- a 95% chance of being right in the
long run) the average number of grains in the test area to be between

7 and 19,

Conclusion

This report analyzes procedures for the evaluation of strongly
enlarged photographs by electronic scanning techniques. The enlarge-
ment is so great that the grain ~icucture of the photograph limits the

accuracy of the evaluation. Two sources of uncertainty are present
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in this process: (1) The quantity to be determined for a certain point
of the photograph (in many cases the local energy density of the elec-
tromagnetic waves) must be approximated by an integral over an area
containing this point; (2) In the determination of this integral an uncer-
tainty occurs because of the randomness in the grain distribution. To
reduce the first uncertainty the test area should be taken small; to
reduce the second one the test area must be taken large.

Regarding the second source of errors it is shown how the variance
of the results can be expressed by a integral containing the light density
and a weight function. By a suitable choice of the weight function the
varince is minimized. This procedure is illustrated in several
examples. Included is the problem of scanning for special patterns in
the light density. The uncertainty mentioned under (1) is connected
with the size of the test area and the properties of the photograph. In
principle the combined variance due to the two sources of error can be
minimized.

Further investigations are concerned with the discrimination between
two known light densities and a special stepwise procedure in evaluating
the light density of the test area.

Formulae for the confidence limits on the true grain count are given
for different cases, The confidence limits depend naturally upon the
average number of grains occurring in the test area. (If several photo-
graphs of the same object exist, the number of points in a given area are

added). For moderate accuracy requirements (5% to 10% uncertainty) a

lower limit is given by 1000 grains.
59




APPENDIX I

DERIVATION OF FORMULAS FOR MY AND VY

Uniform Distribution of Grains in an Area

The statistical theory given in this appendix is not self-contained.
For the convenience of the reader, references have been made to one
book only, 'The Advanced Theory of Statistics, Vol. 1" by M. G.
Kendall, [1].

Let us assume that a constant number of grains, N, are distri-
buted with uniform probability in an area y. Further, assume that
grains arising in some subarea Aw of y are statistically independent
phenomena. One may proceed by raising the following simple question:
If one counts u grains in an area Aw what are the limits of error on
this number u?

Since the production of grains occurs with uniform probability,

it follows that

P=—"0" (Al)

is the probability that a grain is found in Aw, provided that we know
that it is in vy.

Let X represent the number of grains counted in Aw, It
will vary according to the particular photograph.* Since p isa
constant for an area of size Aw in y it follows that the probability

that X is equal to a number u (written as Px(u) ), is given by a

*Statisticians refer to it as a 'random variable." ([1] page 173)
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binomial distribution

Py (u) = crz p (1-pN Y u=0,1...N (A2)

For a discussion of the binomial distribution see [1] page
116, In general, for our problem N will be very large and
p<<1l. Let \= Np represent the average number of grains
expected in Aw. If N+« and Aw-0 in such a manner that A\
is a constant less than 5, Px(u) approaches a Poisson distribu-

tion with mean \; i.e.

M

Px(u) ) u!

(A3)

It is well known that for the Poisson distribution the mean
and the variance are both equal to A\ . For a discussion of this
distribution see [1] p. 120,

At this point, it is worthwhile to introduce the notion of the
"characteristic function" ¢X (t) which is uniquely associated with
Px(u). The introduction of ¢X(t) facilitates greatly the deriva-

tion of formulas for M_, and VY (see page 4 of this report for

Y
definitions of MY and VY)’ ¢X(t) is defined by

= itu
ogl) = T e Pyu) (a4)
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¢x(t) is known in statistics as the '"characteristic function of Px(u)
(corresponding to the random variable X). See [1] page 90 for
further discussion on this subject. Using (A3) and (A4) we obtain

1
2 oM p HRed e g

by (t) =
. Mett-1j

Now consider y as being subdivided into a finely divided
grid of squares where each square has the same area Aw. Label
the squares of the grid as Awl o Awi. s Awn (Fig. 17).

We now consider a random variable Y
n
Y= ¥ 0.X, {A6)

where Xi = number of grains counted in Awi
Gi = weight assigned to the points in Awi .

It is assumed that Xl 0oC Xn are statistically independent

of one another. The corresponding characteristic function of Y
is obtained as follows:

First one finds

I ite; _
¢9ixi (t) = u'z;o elt( 1“1) P(ui) e M (e 1) (A7)
i
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The Xi's are mutually independent. Hence for a fixed set of

values Upeeou of Xl F Xn respectively we have:

u
PY (iz=19iui) = P(ul,uz. see un) (AB)

See [1] page 21.

Hence

¢ (t)= E Lt elt(elul+"' +enun)
! u =0

| un=0 PY(-Z_ 6, u)
i=1
-] «© 3 n
= 2 o ane 2 elt(elul"'+enun)_ﬂ P(u,)
u=0 u =0 i=1 1
1 n
(A9)
_ = itd u % ite_u ® ituy
=Z e 11lP(u )=z e 22P(u,)... T e PP(u)
ul-o 1 u2=0 u :0 n
n
'% t 1| p242
3 e x (0 see1]p
i
(A7) and (A9) yield
it@, T ite
n \ i-1 AZ j-1
o= e AT e (a10
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.
If we take log ¢Y(t) and expand it in terms involving (l:_). ’
then the coefficient of (it)r/r! is called the r-th cumulant,
denoted by Kr' One has
n itQ;
log . (t)= 1 & (e 11)
Y i=1
1=
n (it6°)r n r
[ o0 3
=\ z [Z P1-2 a2 (o) Ut
j=1r=1 T! r=1 j=1 {1 r!
Hence
n r
K=\N2Z ¢ (All)
r i=1 1

It can be shown, see [1] page 60-63, that Kl is the mean My of Y

and that K‘2 is the variance Vy of Y.

n
Hence MY = )‘151 Oi
(Al2)
. n 2
VY=X zZ e, ,
i=l %
where A =N am, (A13)
Y

Now introduce rectangular coordinates (x,y) and let Aw—0

Then 6i= 0(x, y) and ¢Y(t) becomes
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N -
by (t) = exp {Tiiﬁl Ami(e1 i. 1)}-'exp{ ff[ it8(x, ) _) ] dxdy)

assuming that the double integral exists.

From this one obtains

log 4y ()= § fyf [V 1) axay

|1t9 (x, y) | dxdy

g [E0N g y 8" !x, y) dxdy]

This yields

r
K_= Y fe"(x,y)dxdy
r Y Y
Thus
N
M = N1 6 (x y) dxdy
Yy YY
v, = N 1 ef (x,y) dxdy
Y vy

<
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(A15)

(A16)

(Al17)

(A18)
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General Case

It has been assumed in the text that the grains arise by a random
process in such a manner that the probability that a grain is produced
in a given area is proportional to the light flux across that area, On
the basis of this assumption, it is natural to make the following defi-
nition for p, where p is the probability of a grain in Awi given that

the grain is in y. Define p as:

JI p(x,y)dxdy
Awj (A19)

JJ p(x,y) dxdy
Y

P

where p(x,y) is the density of the light flux,

Then, since N=k [[ p(x,y) dxdy by Equation 1
Y

z|=

[[ p(x,y) dxdy (A20)

Awi

p:

Note that when p(x,y) is a constant and Awi has area Aw,

» and this reduces to the case discussed in Section 1.

We shall assume that the region y has been subdivided by some
suitable method into subdivisions Awi such that p, as defined in
(A19), is the same for any Awi thus produced. Then the discussion
in Section 1 can be applied again. Here, ). =Np= kA{)f p (x, y)dxdy is

i

the average number of grains expected in Awi. By definition this is

a constant for any i.
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One obtains in a manner similar to that given in Section 1,

log ¢y (t) =%k i%IIAH p(x, y)dxdy ][ eitei-ll
= W,
1

or

K =k 2 [ Hp(x.y)dxdy]e:

1
Awi

(A21)

If one considers Oi as a discontinuous function of x and y which
assumes in each region Aw, the value ei defined above, one can
1

write the last expression

K =k [[p(x,y) Of(x.y)dxdv
Y

If Awi-O, ei(x, y) tends to a function 0(x,y), i.e.

[ei(X,Y) d 0(x,y)]=0

Then
Re=k ff p(x,y) & (x,y) dxdy
Hence
My =k [T p(x,y) 0 (x,y) dxdy (A22)
Vy=k[fptx y)0%(x, y) dxdy (423)
REFERENCE:

1. Kendall, M.G., The Advanced Theory of Statistics,
Vol.I, 1948, London, Charles Griffin and Company, Limited,
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APPENDIX I
COMPARISON OF POISSON DISTRIBUTION AND NORMAL DISTRIBUTION

The assumption that the grains of the photograph arise in a
random fashion and that the creation of a new grain can be considered
as an event independent of the creation of all previous grains leads to
a Poisson distribution. To be specific if the average number of grains
to be found in a certain test area is N then the probability of finding

in such a test area n grains is given by

N N

= (A24)

p(n) = e

For large values of n this expression can be approximated by a
normal distribution. It is obtained if one expresses n! by means
of Stirling's formula and then carries out certain simplifications,
using the assumption that the number 'n' differs from the average
value N by only a small amount. One thus obtains Bn’ the proba-
bility density of finding n grains in a given area of size dn(if the

expected number is N) as the normal law:

2
p(n) = WIWN e '.(.'%’ﬁ.)_ (A25)

In Figs., 18-23 the expressions (A24) and (A25) are plotted for
N =10 (10) 60. One recognizes that the normal distribution gives

a good approximation for N as low as 10 (In fact it is fairly good for
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N as low as 5). Thus it appears to be justified if one takes the
normal distribution as approximation for the Poisson distribution

whenever such an approximation is needed.
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Table I

Values of P and Ps for the case when r'=r ( \ [ 1)

(x--1)~l'N'1 P, P P P/ps
0 . 5000 . 5000 . 5000 1. 000
0.1 . 4602 . 4028 . 3821 . 949
0.2 . 4207 .3113 .2743 . 881
0.3 . 3821 .2301 . 1841 . 800
0.4 . 3446 . 1628 . 1151 .707
0.5 . 3085 . 1097 . 0668 . 609
0. 6 . 2743 . 0704 . 0359 .510
0. 7 . 2420 . 0429 . 0179 . 416
0.8 . 2119 . 0250 . 0082 .328
0.9 . 1841 .0138 . 0035 .251
1.0 . 1587 . 0072 . 0014 . 187
1.1 . 1357 . 0036 . 0005 .134
1.2 . 1151 . 0017 . 0002 . 094
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T able II{a)

Values of r for yl>l

N, P=P =.10 P=P =.05 P=P =.01
5 1,573 1.736 2,040
10 1. 405 1.520 1.736
20 1,287 1. 368 1.520
30 1,234 1. 300 1. 425
40 1,203 1,260 1. 368
50 1.181 1.233 1. 329 :
100 1.128 1. 164 1.233
200 1. 091 1. 116 1. 164 »
500 1. 057 1. 074 1.104 .
1000 1. 041 1,052 1.074
Table II(b)
Values of r' for y1>1
N, P=P,=.10 P=P =. 05 P=P =. 0l
50 1,221 1. 284 1.403
100 1,156 1,201 1. 285
200 1. 111 1. 142 1.202
500 1. 070 1,090 1.128
1000 1. 049 1. 064 1. 090
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Table II1

Values of Q and Q8 for yl>l

P=P =.10
8
N =50 N, =100 N, =200 N, =500 N, =1000
Q Q Q Q Q Q Q Q Q Q
8 8 8 8 8
.7488 . 7081 6706 .6058 .5469 .4497 .2998 1814 .1061  .0365
.5449 .4518 .3723 .2560 ,1722 .0790 .0151 ,0018 .0002  .0000
1.3 .3445 .2307 .1512 .0659 .0275 .0047 ,0001 .0000 .0000 0000
.0938 . 0329 .0110 ,0012 .0001 .0000 .0000 0000 .0000 0000
.0000 . 0000 .0000 .0000 .0000 .0000 .0000 0000 0000 .0000
P=P =.05
8
N, =50 N, =100 N, =200 N, =500 N, = 1000
Q Q Q Q Q Q Q Q Q Q
8 8 s [-] 8
+ -
.8458 .8144 7852 .7307 .6795 .5870 .4300 .2865 .1840 .0740
.6724 .5834 .5032 .3729 .2702 .1400 .0331 .0049 .0007 .0000
.4682 .3380 .2384 .1173 .0546 .0114 .0004 0000 .0000 .0000
.1538 , 0613 .0231 .0031 ,0004 .0000 .0000 .0000 .0000 0000
.0018 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
P=P =.01
8
N, =50 N =100 N, =200 N =500 N, =1000
Q
. Q Q o q Q Q o Q Q
.9528 .9387 .9257 .8970 .8692 .8078 .6847 .5343 .4039 2127
.8588 .7975 ,7380 .6171 .5068 .3234 .1127 ,0251 0049 000l
L7002 .5714 .4573 .2773 .1586 .0464 .0029 .0001 0000 .0000
.3234 ,1617 .0755 .0145 .0025 .0001 0000 .0000 . 0000
.0075 , 0004 0000 .0000 .0000 .0000 .0000 0000 . 0000

72




St bR e

Table IV(a)

Values of r, and r, for yl#l
P=P =.10 P=Ps=.05 P=Ps=.01
N r r, r r, r r,

5 .264 1,736 .123 1,877 - 152 2,152
10 .480 1,520 . 380 1,620 .185 1,815
20 .632 1,368 .562 1,438 .424 1,576
30 .700 1,300 .642 1,358 .530 1.470
40 . 740 1,260 .690 1,310 .593 1,407
50 . 767 1,233 .723 1,277 .636 1.364
100 .836 1,164 .804 1,196 .742 1, 258

200 .884 1,116 .861 1.139 .818 1,182
500 .926 1,074 .912 1,088 .885 1,115
1000 .948 1,052 .938 1,062 .919 1, 081
Table IV(b)
' '
Values of r} and r} for ylyfl

P=P =.10 P=Ps=.05 P=Ps=.01

' ' ] L ] '

N ) r, r T, r T,

50 . 561 1,439 .513 1.487 .419 1. 581
100 . 690 1,310 . 656 1.344 . 589 1.411
200 . 781 1.219 . 757 1.243 .710 1.290
500 . 861 1. 139 . 846 1. 154 .816 1. 184

1000 . 902 1,098 . 891 1.109 . 870 1,130
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Table V

Values of Q and Q_ for v, #1

P=P_=.10

N, =50 N, = 100 N, =200 N, =500 N, =1000
Y, Q Q Q Q Q Q Q Q aq Q
0.5 .3060 .0037 .0142 .0000 .0000 . 0000
0.6 .7474 .1915 .3982 .0193 .0526 .0001 .0000 .0000 )
0.7 .7992 .2845 .5218 .0526 .1z97 .0010 .0002 0000 .0000 .0000
0.8 .8876 .6014 .7945 3456 .5667 .0929 .1020 ,0008 ,0017 .0000
0.9 .9127 .8320 .8954 .7490 .8561 .5954 .7108 .2666 .4456 .0549
1.1  .8508 .8019 .8316 .7248 .7904 .5853 .6534 2864 .4247 .0740
1.2 .7574 .5808 .6706 3725 .4945 .1399 1366 .0049 .0078 ,0000
1.3 .6206 .3376 .4383 .1173 .1779 .0ll4 .0047 .0000 .0000 .0000
1.5 .3047 .0613 .0860 0031 .0038 .0000 .0000 .0000
2.0 .0089 .0001 .0000 .0000 .0000 .0000

P=P =.05

- Ny =50 N, =100 N, = 200 N =500 N, =1000
Y, Q Q Q Q Q_ Q Q_ Q Q.  Q
0.5 .4552 . 0129 .0357 .0000 0000 .0000
0.6 .8479 .3134 .5361 ,0463 ,1003 0004 .0000
0.7 .8847 4235 .6555 .1069 .2140 0032 .0008 .0000 .0000
0.8 .9427 ,7290 .8791 .4821 .6916 .1658 .1697 .0025 .0043 . 0000
0.9 .9579  .9042 .9472 .8433 .921% .7173 .8127 .3855 .s707 .102%
1.1 .9173 .8784 .9037 .8176 .8732 .6979 .7611 ,3961 ,5427 .1258
1.2 .8471 .6898 .7749 .4853 ,6113 .2139 2051 .0109 .0153 .0000
1.3 .7297  .4436 .5527 .1808 .2563 .0226 .0093 .0000 .0000
1.5 .4047 .0991 ,1322 .0065 .0074 .0000 .0000
2.0 .0156 , 0002 ,0001 .0000 .0000
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Table V (continued}

Nl =50 Nl =100 Nl=200 Nl=5°° Nl =1000

Y, Qs Q Qs Q Qs Q Qs Q Qs Q
0.5 .7460 ,0874 .1504 ,0003 .0003 .0000 ,0000
0.6 .9573 ,6056 .7792 .1768 .2708 .0044 .0004 .000C
0.7 .9703 ,7065 .8574 3061 .4462 ,0232 ,0056 .0000 .0000
0.8 .9882 .9030 ,9665 ,7401 8724 .3888 .3674 .0170 .0214 ,0000
0.9 .9922 .9753 .9893 .9516 .9812 .8896 .9354 ,6399 ,7829 2682
1. 1 .9792 .9617 ,9740 .9332 ,9614 ,8659 .9037 .6270 .7491 .2880
1.2 .9489 .8554 ,9104 ,7004 .8002 .4088 .3816 .0417 .0483 ,0003
1.3 .8817 .6549 ,7501 ,3549 ,4433 ,0719 .0307 ,0001 ,0001 .0000
1.5 .6050 ,2166 .2612 ,0239 ,0234 ,000F ,0000 .0000 .0000
2.0 .0403 .0007 .0004 .0000 .0000 .0000
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APPENDIX III

I. Computational procedure for finding r, given ¢ an assigned

value of P(x).

P(x)= du

1 © -
—_ e 2
NZw L
where x = (r-l)'JNl
Now set P(x) equal to e, i.e,

1
N2w

Given a, the problem is: compute P (x). To solve this problem on

P(x) =

u
f:e' 2 du=a (a)

Burroughs E101 Electrodata Electronic Computer, we proceed in the

following manner. We replace P(x) in (a) by the approximate formula

16
P(x) = [ 3‘ " —] (b)
c~l-a1 x-i'a2 X +a3x +a4x +a5x +a6x

- x
where x =
7.0710678119
1
¢ =1,0442737826 = e
NZ
a.1 =, 03682270091
a2 =,11038499229
a3 =,12101231517
a4 = ,00992153425
a5 =,09025371127
a6 = ,.07026624580

for (x) in the range: - 7.0710678119 =< x < 7.0710678119
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The formula (b) will yield 6-place accuracy.

we obtain:

2
1 -
Px)z-c— ¢ 2
o) =
Now, - —— = .398994 22811
" oNZm
Let xZ/Z = x
then
e-;: za -a x+a &2 §3+a ;:4-3, :':5
"0 M) 2 3 4 5
where
a0=1.0
al =z=-1,0
a2=.5
a3=:.166666 66667
a4=.416666 66667
a5=.008333 33333
a6=.001388 888889
a7 =,000198 41270
a8 =,000024 80159
a9 =,0000027 5573

20" 0000002 7557

ea 30
a6x

Differentiating (a)

(c)

-10

ceeetd X (d)

10

(d) will yield 10-place accuracy if the following identity is used:

x
-x -=.n
e =(e n) , where

BIx
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.2
(For example, if it is desired to compute e-z. first compute e 1,

then raise to the fourth power).

Now we can compute P(x) and P'(x)

Let f (x) = P(x)- a
fY(x) = PYx)

Iteration formula for x:

_ f(x)-a _ P(x)
*nt1” *n f(x) n P'(x) (e}
Take an arbitrary value for x. We calculate P(x)and P'(x) using
(b), (c). Substituting these into (e) give us a second value for x.
Repeat iteration by repeated application of (e). The process converges

to the desired value of x. If this value is y, we set:

y=(r-)~Nn,

or, r= (Y/'fnl)+l

Then, for a given n, r is computed

II. Computational procedure for finding r', given ¢ , an assigned
value of Ps where Ps is given by the formula on page 44, As before,
set Ps =a, The incomplete beta-function Ix(p. q) can be represented

by the following series:

(f)

5 4 3 2
Ix(5. 5)=x [a4x -a,x ta,x -a1x+ao]
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where a, =170

4
a, = 315
a, = 540
a, = 420
ag = 126

This function also represents Ps from formula given on Page 45.

Now f(x)=a- Ix(5.5)

f'(x) = -630 x4(l-x)4

To find x, we use the following iteration formula:

n nof'(x)
a-I (5.5)
=X 4 x
n

630 x4 (1 -x4)

Using the solution of this iteration,call it y, we set:
du

where t = (r'-l)'JN'l

and the problem now reduces to solving for t. But this is exactly
the same type of problem as in (I ), Using the method given in (I)

we compute t. Then for a given N, we compute r' from the

1
relationship u=(r'-l)'\/N'l R
III. Computational procedure for finding Q given Yy Nl and r.

r was obtained using Computational Procedure I from page 46. Q is

given by:
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where ul =(r -YD Nl
¥4

To compute Q, assign a value to Y, (say, Y, = 1.1) and to Nl g

Using the value of r obtained, we calculate u With this value of

l-

u, Wwe use formula (b) and calculate P(:-c) , Where
P
7.0710678119

This value of P(x) is the desired Q.

IV. Computational Procedure for finding Qs’ given yl,N ,r's The

1
value of r' was obtained using Computation Procedure II. Now from page 47,

2

up _ N

1
= e 2 du
qs New !oo

(r'- y))NN]
3~/'y‘l'

where u_ =

Assign a value to Y, (say Yl =1.1) andto N Using the value of

1"

r' obtained, we calculate uz. With this value of u2 we use formula
LP

7.0710678119

(b) and calculate P(x) where x =

This value of P(;c) is q- In formula (f) set x equal to the value of
qg which we have obtained, and calculate Ix(5, 5). This value is the

desired value of Qs 7

80




V. Given the function:

2

1 R

® = e 2 du
i RN

® (x) can be approximated to six decimal places by the following

series in the range -7.0710678119 < x =< 7,0710678119

(x)=1-[ - = _31 —_—— ]16
a.o+a.l x+a.Z x +a3 x +a.4 X +a5 X +a6x

where X = T—5rioeraTTg

a, = 1

a, = . 03526 15392

a, =. 105705 03075

a, = 115881 7900

a, =. 009500 89375

ag =. 086427 2500

aa S . 067287 1875
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—mean value

._-lll
Fig.,1 PROBABILITY DENSITY CURVE
Fig.2 SCANNING FOR A GIVEN PATTERN

THE RECTANGLE REPRESENTS THE TEST AREA A,
THE SHADED PART IS THE PATTERN THAT IS TO BE
FOUND. ITS AREA IS Yo A,
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